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Abstract

A hybrid ensemble transform Kalman filter (ETKF)-3DVAR analysis scheme is 

compared to an ensemble square-root filter (EnSRF) analysis scheme in a two-layer 

primitive equation model under perfect-model assumptions. The ETKF-3DVAR updates 

the ensemble mean with a hybridized ensemble covariance and the 3DVAR covariance, 

and it can be incorporated to the operational 3DVAR data assimilation framework 

conveniently. The ensemble perturbations are generated by the computationally efficient 

ETKF scheme. The EnSRF runs comparatively expensive parallel data assimilation 

cycles for each member and serially assimilates the observations. The EnSRF 

background-error covariance is estimated fully from the ensemble, and covariances are 

localized.  The intent of this study is to determine whether the hybrid ETKF-3DVAR 

method provides much of the potential improved accuracy of the EnSRF.

It was found that depending on the norm, the analyses of the hybrid ETKF-

3DVAR corresponding to the optimal linear combination coefficient were slightly less 

accurate or similar to the EnSRF using its optimal covariance localization scale. The 

ETKF-3DVAR system was less prone to spurious gravity wave activity than the EnSRF 

that requires covariance localization. Maximal growth in the ETKF ensemble 

perturbation space exceeded that in the EnSRF ensemble perturbation space. The skill of 

the ETKF ensemble variance to estimate the ensemble mean error variance is similar to 

that of the EnSRF ensemble.  It was also found that applying covariance localization to 

the ensemble part of the hybrid error covariance when updating the mean did not improve 

its analysis.  The hybrid ETKF-3DVAR approach is thus judged to be a promising, less 

expensive approach to utilize ensemble forecasts effectively in data assimilations.
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1. Introduction

Variational techniques are now almost universally used for operational 

atmospheric data assimilation in either its three-dimensional form (3DVAR; e.g., Parrish 

and Derber 1992; Courtier et al. 1998; Gauthier et al. 1998; Cohn et al. 1998) or its four-

dimensional form (4DVAR, e.g., Courtier et al. 1994; Rabier et al. 1998, 2000).  Both 

3DVAR and 4DVAR assimilations generally begin in each update cycle with nearly 

homogeneous, isotropic, and stationary background error covariance model1, which only 

provides a crude estimate of the actual flow-dependent forecast error structure.  

Currently, 3DVAR is still utilized in many operational centers due to its computational 

efficiency and algorithmic simplicity.  

Recently, a variety of techniques have been explored to relax the restrictions on 

the background-error covariance model in data assimilations.   For 3DVAR, techniques 

are being developed that make it possible to include some spatial inhomogeneity, non-

stationarity, and anisotropy (e.g, Riishøjgaard 1998, Wu et al. 2002, Purser et al. 2003, 

Liu et al. 2005).  A different approach is to use ensemble-based data assimilation 

techniques, where the background-error covariances are estimated from an ensemble of 

short-term forecasts (e.g., Evensen 1994, Burgers et al. 1998, Houtekamer and Mitchell 

1998, 2001, 2005, Hamill and Snyder 2000, Anderson 2001, Whitaker and Hamill 2002, 

Ott et al. 2003, Tippett et al. 2003, Snyder and Zhang 2003, Hamill and Whitaker 2005, 

Tong and Xue 2005). For reviews on ensemble-based techniques, see Evensen (2003), 

Lorenc (2003), and Hamill (2005).  

  
1 Hereafter, we use the term “3DVAR covariance” to indicate time-invariant, isotropic and homogeneous background 
covariance, as those assumptions are commonly used in the 3DVAR scheme. 
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The presumed benefit of utilizing these ensemble-based techniques is their ability 

to provide a flow-dependent estimate of the forecast-error covariance so that the relative 

contribution of the guess and the observations are more appropriately weighted. Another 

potential benefit is that the processes of ensemble forecasting and data assimilation are 

unified. In many controlled tests with simple models and simulated observations, 

ensemble-based methods have demonstrated dramatically improved analysis skill.   

However, tests of ensemble-based methods in a realistic operational environment are still 

at a preliminary stage.  Recent global, real-data experiments show that the ensemble 

Kalman filter (EnKF; Houtekamer et al. 2005, Houtekamer and Mitchell 2005) and the 

ensemble-square root filter (EnSRF; Whitaker and Hamill 2005), provide comparable or 

slightly better results to operational 3DVAR algorithms. 

Many of the current ensemble-based data assimilation techniques serially process 

the observations, so the computational expense of the algorithm scales linearly with the 

number of observations, unlike in 3DVAR and 4DVAR.  This may make these methods 

unattractive for use in operational numerical weather prediction centers, where the 

numbers of available observations are increasing rapidly each year.  

Is there a method that can take advantage of the computational efficiency of the 

3DVAR and also benefits from the ensemble-estimated error covariance?   Recently, 

Hamill and Snyder (2000) proposed a hybrid EnKF-3DVAR method (hereafter HS).   In 

this scheme, the background-error covariance was obtained by explicitly weighting a 

flow-dependent background-error covariance from the ensemble together with the 

standard error-covariance estimate from 3DVAR.  Each ensemble member is then 

updated variationally with perturbed observations.  Subsequently, Lorenc (2003) and 
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Buehner (2005) discussed how an ensemble-based covariance model could be adapted 

conveniently to the variational framework by extending the control variables. A proof of 

the equivalence of the hybrid method realized by the augmented control variables and by 

directly weighting the covariances was recently provided in Wang et al. (2005).

More recently, Etherton and Bishop (2004) tested a hybrid ensemble transform 

Kalman filter (ETKF)-3DVAR assimilation scheme, which is a variation of the HS 

scheme. Unlike the HS scheme where K parallel data assimilation cycles for the K

members were required, in the hybrid ETKF-3DVAR, a single update of the mean was 

performed, and the ETKF transformed the background perturbations into analysis 

perturbations in a computationally efficient manner.  The ETKF, was proposed by Bishop 

et al. (2001).  It has been demonstrated to be a useful tool for targeted observations 

(Majumdar et al. 2001, 2002ab). Wang and Bishop (2003) and Wang et al. (2004) also 

have shown that the ETKF provides an inexpensive yet demonstrably superior scheme to 

the breeding method (Toth and Kalnay 1993, 1997) for generating perturbed initial 

conditions for ensemble forecasts.  Etherton and Bishop (2004) found that the 

performance of the hybrid scheme using the ETKF ensemble was comparable to that 

obtained using considerably more expensive ensemble generation schemes.

The purpose of this study is to further explore the potential skill of the hybrid 

ETKF-3DVAR analysis scheme by comparing it with the EnSRF, one of the more well-

tested ensemble-based assimilation schemes (Whitaker and Hamill 2002; Whitaker and 

Hamill 2005; Snyder and Zhang 2003; Zhang et al. 2004; Ott et al. 2004; Szunyogh et al. 

2005; Houtekamer and Mitchell 1998, 2001,2005; Houtekamer et al. 2005).   If the 

ETKF-3DVAR can realize much of the improvement by the EnSRF relative to the 
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3DVAR, then it may be more appealing to the operational centers as it is convenient to be 

adapted in the current variational framework, computationally less expensive, and 

relatively low risk − it can perform no worse than 3DVAR, for its blend of covariances 

can always be adjusted to exclude the contribution of the ensemble.

As an initial attempt to investigate the potential skill of the hybrid ETKF-3DVAR 

relative to the EnSRF, we first conduct our experiments here with a two-layer primitive 

equation model under the perfect-model assumption. Such a test design will isolate 

whether the hybrid ETKF-3DVAR with no covariance localization required will generate 

analyses similar in skill to the EnSRF, which requires covariance localization to prevent 

filter divergence (Houtekamer and Mitchell 2001, Hamill et al. 2001). Future work by the 

co-authors will extend this research to compare the methods in simulations including 

model error.

The rest of the article is organized as follows. In section 2, we briefly review the 

hybrid ETKF-3DVAR and the EnSRF analysis schemes. Section 3 describes the 

experimental design. Results of comparing the two schemes are reported in section 4. 

Section 5 concludes the paper.

2. The hybrid ETKF-3DVAR and the EnSRF analysis schemes

a. The hybrid ETKF-3DVAR scheme

Figure 1 illustrates how the hybrid ETKF-3DVAR data assimilation cycle works. 

Start with an ensemble of K background forecasts at time 0t .  The following four steps 

are then repeated for each data assimilation cycle. 1) Update the ensemble mean or a high 

resolution control forecast by the hybrid ETKF-3DVAR background-error covariance. 2) 
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Update the forecast perturbations using the ETKF transformation matrix. 3) Add the 

updated ensemble perturbations to the updated ensemble mean to generate K initial 

ensemble members. 4) Make K forecasts starting from the K initial ensemble members 

forward to the next analysis time.

When updating the mean, the background error covariance bP is approximated by 

a linear combination of the sample covariance matrix of the ETKF forecast ensemble eP

and the 3DVAR covariance matrix B , i.e., 

 Pb = 1− α( )Pe + αB ,                                               (1)

where  α is the weighting coefficient, 0 ≤ α ≤  1, and eP is given by

 
( )

1

Tb b
e

K
X X

P =
-

,                                                 (2)

where the columns of bX contain K ensemble perturbations from the mean, b
i
'x , i = 1, 

… K. 

As mentioned in the previous section and section 5, previous work (Lorenz 2003; 

Buehner 2005; Barker 1999; Wang et al. 2005) has shown that hybridizing the ensemble 

covariance in the existing operational 3DVAR framework with preconditioning can be 

achieved conveniently. Since development of this variational code for the two-layer 

primitive equation model is time consuming and the intent of this study is to demonstrate 

the effect of the hybrid covariance model, we employ the Kalman-filter state update 

equation instead, which can also be derived from the 3DVAR cost function (Daley 1991).  

It will provide an identical solution under the assumption of normality of error 

distributions and linear observation operator.  In an ensemble construct, this equation 
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updates the ensemble-mean forecast bx to the new observations y to obtain the 

ensemble-mean analysis ax , i.e.,

 ( ) ( )1a b b T b T bx x y x
-

= + + -P H H P H R H ,                          (3)

where H is the observation operator mapping from the model state variables to the 

observed variables, here presumed linear, R is the observation-error covariance matrix, 

and Pb is given by equation (1).   Note as in EnKF framework (Evensen 1994; 

Houtekamer and Mitchell 1998), there is no need to compute and store the full matrix Pb . 

Instead we first form  BHT and  HBHT (see section 3b for details), and calculate  Pe HT

and  HPe HT from the ensemble.  Then we use the linear coefficient α as in (1) to form 

 Pb HT and  HPb HT , i.e., 

  HPb HT = 1−α( )HPe HT + α HBHT ,                                          (4)

  P
b HT = 1− α( )Pe HT + α BHT .                                               (5)

With α=1, equ. (3) provides an ensemble-mean 3DVAR analysis. Note as in Etherton and 

Bishop (2004), before applying the hybrid formulations (4) and (5), steps are taken to 

ensure that the traces of eP and B are equivalent in the observation space.  For a detailed 

explanation of this, see section 3b.

In the hybrid analysis scheme, the ensemble perturbations are updated by the 

ETKF. The ETKF transforms the matrix of forecast perturbations bX into a matrix of 

analysis perturbations aX , whose columns contain K analysis perturbations, a
k
'x , 

Kk ,1= .  The transformation happens through the post-multiplication by the matrix T , 

that is,

 TXX ba = .                                                             (6)
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The transformation matrix is chosen to ensure that the analysis-error covariance formed 

from the outer product of the transformed perturbations will be precisely equal to the true 

analysis-error covariance, assuming that eq. (2) denotes the true forecast-error 

covariance, all errors are normally distributed, and H is linear.  As shown in Bishop et al. 

(2001), Wang and Bishop (2003) and Wang et al. (2004), a precise spherical simplex 

solution of T is 

 ( ) TCIΓCT / 21−+= ,                                                      (7)

where C contains the eigenvectors and Γ the eigenvalues of the KK × matrix 

Xb( )T
HTR− 1H Xb and I is the identity matrix. For the ensemble size K of 100 or less, the 

computation of (7) is relatively inexpensive. 

When K is significantly smaller than the rank γ of the true forecast-error 

covariance, (2) is a poor approximation of the background-error covariances.  The 

analysis-error covariance estimated through the ETKF-transformed perturbations is thus 

far from optimal.  In the first implementation of the ETKF, the ensemble of analyzed 

deviations aX were dramatically inflated to compensate for the small ETKF-estimated 

analysis-error variance (Wang and Bishop 2003).  As discussed in Appendix A, this bias 

can be significantly ameliorated by accounting for (a) the fact that the sample covariance 

of K forecast trials systematically overestimates the true error variance within the 

ensemble subspace when γ<<K , and (b) the expected angle subtended between 

ensemble-based eigenvectors and true eigenvectors. Based on these arguments, the ETKF 

transformation matrix T is updated to 

 ( ) TCIΓCT / 21−+= ρ ,                                                   (8)
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where the scalar factor ρ is the fraction of the forecast error variance projected onto the 

ensemble subspace. It is estimated by 

 ( ) ( ) ( )
( ) ( ) p

K
bTb

bTTb

−−−

−−−−
=

−−

−−

xyxy

xyxy

H~RH~R

H~REEH~R
//

//

2121

2121 1
ρ ,                              (9)

where p is the number of observations, H~ is the normalized observation operator 

HRH~ / 21−= , and the columns of E contain the eigenvectors of  the ensemble covariance 

in normalized observation space. As shown in eq. (12) of Bishop et al. (2001),

 121 −= − Kb /CΓXH~E .                                                (10)

The over bar in (9) represents the average over some independent samples. In this 

experiment it is the average over two weeks’ computations prior to each assimilation 

time. For derivations of (8) and (9), please refer to appendices A and B respectively.  A 

more detailed discussion about the bias-ameliorated ETKF formulation will be given in a 

forthcoming paper.  Note no covariance localization is applied in this ETKF, unlike most 

other ensemble data assimilation methods.  

The maximal likelihood inflation method (for details see Wang and Bishop 2003) 

is applied.  The idea is to multiply the initial perturbations obtained at time it by an 

online estimated inflation factor iΠ , i.e.,

 ii
f
i

a
i Π= TXX ,                                                      (11)

to ensure that at time 1+it the background ensemble forecast variance is consistent with 

the ensemble-mean background-error variance over global observation sites. Specifically, 

define id~ as the innovation vector at it , normalized by the square root of the observation 
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error covariance matrix, that is, )(21 b
iii xyd HR~ / −= − , where iy is the observation vector 

at it and b
ixH is the ensemble mean background forecast valid at the time it mapped into 

observation space by the observation operator H . Given that the inflation factor at 1−it

was 1−iΠ , the inflation factor for the transformed perturbation at it is obtained by first 

checking if ii d~d~ T is equal to )( T IH~PH~ +e
iTr , where Tr denotes the trace.  If not, we need 

to introduce a parameter ic so that 

 )( TT IH~PH~~~ += e
iiii cTrdd .                                               (12)                                  

Then the inflation factor iΠ is defined as              

 iii cΠΠ 1−= .                                                        (13)   

This rescaling of the initial perturbations by (13) attempts to correct the spread of the set 

of forecast ensemble perturbations at time 1+it by using the rescaling factor that would 

have produced a proper forecast ensemble spread at it if it had been applied to the 

transformed perturbations at 1−it . From (12)

 
)( T

T

H~PH~
~~

e
i

ii
i Tr

pc −
=

dd ,                                                     (14)                                    

where p is the number of observations.  From equation (13), iΠ is a product of these c

parameters from the first forecast at time 1t to that at time it , that is,

 ii cccΠ ⋅⋅⋅= 21 .                                                 (15)             

Implicitly in (12), we assume ><= TT
iiii Tr dddd ~~~~ , which requires the number of 

independent elements in the innovation vector id~ to be large. Real-time global 
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observational network meets this assumption well (Dee 1995). Since the number of 

observations in our experiment is rather limited, we replace ii dd ~~T in (12) and (14) by 

using the average of squared innovation vectors two weeks prior to time it , denoted as 

ipriort
T dd ~~ (see discussion in Appendix B also). Thus (14) becomes

  
)( TH~PH~

~~
e
i

priort
T

i Tr
pc i −

=
dd .                                             (16)

In the following hybrid data assimilation experiments, ic fluctuates about unity with the 

averaged rms deviation about 0.2. 

b. The EnSRF analysis scheme

The EnSRF was fully described in Whitaker and Hamill (2002). It is one of the 

simpler implementations of a class of ensemble square-root filters which includes the 

ETKF (Tippett 2003).  Whereas the primary advantage of the hybrid ETKF-3DVAR is its 

low computational expense, the comparative advantage of the EnSRF is its relative 

algorithmic simplicity and the consistency of the prior background error covariances used 

to update the mean and the ensemble. In the EnSRF, covariance localization is necessary 

to avoid filter divergence (Houtekamer and Mitchell 2001; Hamill et al. 2001) and to 

improve the analysis accuracy.  However, covariance localization can produce 

imbalanced initial conditions (e.g., Mitchell et al. 2002; Lorenc 2003). For the hybrid 

ETKF-3DVAR, no covariance localization is required on the ETKF as hybridizing the 

3DVAR covariance adds in extra degrees of freedom and thus stabilizes the filter.  Note 
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covariance localization can be applied for the ETKF when updating the mean (Section 

4a).

The EnSRF serially assimilates observations for each member, and the ensemble 

of perturbations updated by the previous observations are used to model the background-

error covariance for assimilating the next observation.  The EnSRF update equations are 

as follows:

 xa = xb + K y − H xb( ),                                                (17)

 ( ) b
i

a
i

'' HK~I xx −= .       (18)

Here K is the Kalman gain modified by the covariance localization,

 ( )( ) 1−
+= RHHPHPK Te

s
Te

s οο ρρ ,                                       (19)

where the operation οsρ denotes a Schur product of a correlation matrix sρ with the 

covariance model generate by the ensemble. For horizontal localization, one such 

correlation matrix can be constructed using Gaspari and Cohn’s (1999) approximately 

Gaussian-shaped function with local support, which will be used here. When sequentially 

processing independent observations, K , K~ , and TeHP are all vectors with the same 

number of elements as the model state vector, and TeHHP and R are scalars. The 

reduced gain becomes

 K
RHHP

RK
1

1
~

−










+
+= Te .                                                  (20)

A global inflation factor was computed and applied to the initial EnSRF ensemble using 

the same method as that used for the ETKF ensemble. 



14

3. Experiment design

a. Model, observations, and ensemble configuration

In this study, we ran a dry, global, two-layer primitive equation model (Zou et al. 

1993). It was previously used in Hamill et al. (2001) and Hamill and Whitaker (2005) for 

ensemble data assimilation experiments in both a perfect-model and imperfect model 

contexts.  The model is spectral and the model state vector includes spectral coefficients 

of vorticity and divergence at two levels, and two layer thicknesses 1π∆ and 2π∆ , where 

π is the Exner function. There is a simple, zonal wavenumber 2 terrain. The model is 

forced by Newtonian relaxation to a prescribed interface Exner function. A fourth order 

Runge-Kutta scheme is used for numerical integration, and 8∇ hyperdiffusion is used.  

The parameters chosen are the same as in Hamill and Whitaker (2005). The model was 

run at T31 resolution, which produces a relatively slow error-doubling time of about 4 

days.  The perfect-model assumption was made in the following experiment. For detailed 

model dynamics characteristics, please refer to Hamill and Whitaker (2005).

Observations of interface π and surface π were taken at a set of nearly equally 

spaced locations on a spherical geodesic grid (Fig. 2). The 362 observations of each 

consisted of the T31 true state plus errors drawn from a distribution with zero mean and 

standard deviation of 8.75 11 −− KJkg for interface π and 0.875 11 −− KJkg for surface π , 

respectively. The numbers chosen were about one quarter of the globally averaged 

climatological spread of the nature runs.  Observation errors were constructed to be 

independent spatially and temporally, and observations were assimilated every 24h.
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In all the experiments, the ensemble size was 50 members. The ensemble was 

initialized with random draws from the model climatology. The data assimilation was 

conducted for 150-day period, and the statistics were accumulated over the last 100 days.

b. 3DVAR error covariance

In this experiment, we used a technique for developing a static 3DVAR error 

covariance model similar to ones described in Evensen (2003), Zhang and Anderson 

(2003) and Hamill and Whitaker (2005).  In this experiment, the 3DVAR background-

error covariance was formed from a large inventory of historical forecast errors; in other 

words, actual background forecast errors were collected over many separate times.  To 

obtain a realistic 3DVAR error- covariance model in this framework, the following steps 

were iterated until the analysis-error statistics were stable:  1) collect the background

error samples from the data assimilation cycle.  For the first iteration, the samples were 

obtained from the 24h ensemble mean forecast errors of the lowest-error EnSRF 

experiment; 2) build a range of possible 3DVAR covariance models TsHHB and TsHB

from the sample covariances of these samples and applying a range of different potential 

covariance localization scales to reduce the sampling error; 3) run a 3DVAR data 

assimilation cycle for each of these background-error covariance models with an online 

estimated rescaling factor specified below; 4) choose the 3DVAR cycle with the smallest 

root-mean square (rms) analysis error; and 5) return to step 1.  

Note in step 3, as in Etherton and Bishop (2004), during each assimilation cycle 

we rescale the 3DVAR covariance models so that in the normalized observation space, 

the total variance of the 3DVAR covariance model is consistent with the total forecast 
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error variance. To be specific, at data assimilation time it , we seek a rescaling factor if

that satisfies

 )(trace T IH~BH~~~ += s
ipriort

T fidd ,                                           (21)

where ipriort
T dd ~~ is defined the same as in (16).  The subsequent rescaled 3DVAR error 

covariances at it are Ts
i

T
i f HBHHHB = and Ts

i
T

i f HBHB = .  Note the rescaling 

strategies adopted make traces of the ensemble covariance and the 3DVAR error 

covariance are approximately equal. Thus, the coefficient α in (1), (4) and (5) gives a 

clearer indication of the relative weights assigned on the error correlations given by the 

ensemble and the 3DVAR.

Following the above steps, the rms analysis error of the 3DVAR run converged 

after the second iteration with 250 error samples and a Gaspari and Cohn (1999) 

horizontal localization which tapered to zero at 15000 km. This error covariance model 

together with the rescaling strategy was adopted as the 3DVAR background error 

covariance in the subsequent hybrid experiments.  The 3DVAR error covariance built this 

way is an approximation to the operational 3DVAR. For example, since in operations the 

truth is unknown, the samples are collected from series of 24h minus 12h forecasts or 

analysis (Parish and Derber 1992).  Constraints are imposed in the operational 3DVAR to 

maintain balance. The use of localization to build the 3DVAR covariance in this 

experiment may degrade the balance implicit in short term forecast errors.

4. Results

a. Analysis errors



17

In this section, we evaluate the characteristics of the analysis errors for the hybrid 

ETKF-3DVAR and the EnSRF analysis schemes. Fig. 3 shows the rms analysis error in 

the norm of kinetic energy, upper-layer thickness 2π∆ , and the surface pressure π .  

Definitions of these norms are provided in Hamill and Whitaker (2005).  The black bars 

correspond to the results of the hybrid ETKF-3DVAR as a function of the weighting 

coefficient, α . The grey bars correspond to the rms analysis errors of the EnSRF with 

respect to different covariance localization length scale. The white bar is the result for the 

3DVAR. Note the difference between the 3DVAR and the 1.0α = experiments is that the 

background forecast for the former is from the single control forecast whereas for the 

latter it is from the ETKF ensemble mean forecast.

The optimal linear combination coefficient α for the hybrid ETKF-3DVAR was 

0.4 for all three norms.  When the background error covariance was purely from the 

3DVAR, i.e., 0.1=α , the analysis error was less than the error of the 3DVAR control 

simulation, which presumably was because the background forecast from the ensemble 

mean was more accurate than the control run; a similar result was shown in the 

perturbed-observation experiments in Hamill et al. (2000).  The localization scale that 

produced the smallest rms error for the EnSRF in this experiment was ~ 15000 km −

25000 km. In all three measures, the best performance of the hybrid ETKF-3DVAR was 

slightly worse than that of the EnSRF.  However, approximately 90% of the improvement 

of the EnSRF over the 3DVAR was achieved by the hybrid ETKF-3DVAR. As expected, 

the hybrid with the coefficient of 0.0 and the EnSRF with no localization both exhibited 

filter divergence due to the sampling error of the limited ensemble size.  Although the old 

ETKF using (7) with 0.0=α diverged with similar rapidity to the EnSRF with no 
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localization, the new ETKF using (8) with 0.0=α diverged much more slowly (not 

shown). This indicated that with a limited ensemble size, the new ETKF sampled the 

analysis error better than both the un-localized EnSRF and the old ETKF.

The optimal localization scale for the EnSRF was larger than what may have been 

expected by other studies (e.g., Hamill et al. 2001; Houtekamer et al. 2005).  The possible 

reasons are a) the model resolution in this experiment was coarse, T31, and the 

covariance localization scale for a coarse-resolution model may be larger than that for a 

fine-resolution model that can resolve small-scale features; b) the optimal localization 

scale for the EnSRF is longer than that for the EnKF, since the EnKF introduces much 

noise through the perturbation of observations (Whitaker and Hamill 2002); and c) the 

two-layer primitive equation model in this experiment did not include an initialization 

step, to efficiently damp the gravity-wave noise generated by the imbalance due to a short 

localization scale, and the explicit 4th-order Runge Kutta time integration scheme also 

failed to damp these fast-propagating wave motions.  Thus an imbalanced background 

inherited from the previous assimilation cycle together with the imbalance introduced by 

the EnSRF assimilation may have accumulated during the assimilation cycles, more 

acutely so with a more severe localization.  Perhaps this aspect could have been better 

controlled with a different time integration scheme or an explicit initialization.

In the above results of the hybrid ETKF-3DVAR, no covariance localization was 

applied for the ensemble covariance when updating both the mean and the perturbations. 

Although covariance localization is not required by the hybrid ETKF-3DVAR, one can 

choose to apply it onto the ensemble covariance when updating the mean to see whether 

it will improve the hybrid analysis accuracy further.  Our results (not shown) indicated 
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that none of the hybrid ETKF-3DVAR experiments with covariance localization applied 

produced better analyses than the hybrid experiment with  α = 0.4 and no localization, 

although appropriately chosen covariance localization had positive impact for small α .  

For example, at  α = 0.0, filter divergence was avoided when covariance localization was 

used. At small α , e.g.,  α = 0.2, applying covariance localization with scale of 25000km 

reduced the analysis error by 6% for the surface π and kinetic energy norms, and by 11% 

for the 2π∆ norm, whereas applying relatively smaller localization scales such as 

15000km degraded the analysis skill by 22%, 40% and 2% for the surface π , kinetic 

energy and 2π∆ norms respectively. Applying 5000km localization scale degraded the 

analysis skill even more. At relatively larger α , e.g.,  α = 0.4 , applying the covariance

localization performed the same or worse than with no localization.  As covariance 

localization can potentially generate imbalanced initial conditions, in the following we 

only show experiment results of the hybrid ETKF-3DVAR with no covariance 

localization.

b. Similarity of hybrid and EnSRF covariance models

To demonstrate that with the ensemble covariance incorporated in the hybrid 

ETKF-3DVAR the background error covariance is flow-dependent, we performed single-

observation experiments and plotted the analysis increment associated after assimilating a 

single prespecified observation. For illustration, we conducted the experiment based on 

the background ensemble at the 100th data assimilation cycle from each experiment 

above. Fig. 4 and Fig. 5 show the results for the hybrid ETKF-3DVAR with the optimal 

coefficient 4.0=α and the EnSRF with the optimal covariance localization scale of 

25000 km. The contours are the background ensemble mean of upper layer zonal wind, 
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meridional wind and thickness, at the 100th cycle. The colors are the analysis increment 

from the assimilation of one 2π∆ observation with the value of 3 11 −− KJkg smaller than 

the mean background at 47° N, 108° W.  Both increments from the hybrid and the EnSRF 

were aligned along the flow pattern, and the wind increment appeared to be dynamically 

consistent with the interface height increment, e.g., a cyclonic wind was associated with a 

decrease of layer thickness around the observation site.  As expected, the corresponding 

increment for the hybrid with background-error covariance purely estimated by the 

3DVAR (α=1.0) was relatively confined and did not correspond to the orientation of the 

flow pattern (not shown), which is consistent with previous studies (e.g., Hamill and 

Snyder 2000).

c. Comparison of maximal perturbation growth rates

A desirable property of an ensemble of initial conditions is an appropriately rapid 

growth of subsequent forecast perturbation. We measured the error-growth characteristics 

of various ensembles by calculating the fastest growth within the ensemble subspace 

during the first 24 h. First we assumed for a short-term forecast that the dynamic operator 

M was linear, that is, 

 Xb = M Xa .                                                        (22)

We then identified the direction in the initial ensemble perturbation subspace where the 

subsequent amplification was maximized in a chosen norm, that is, we found the vector 

of linear combination coefficients b to apply to the initial perturbation such that

  
( )
( )

m a x
TT b b

TT a a

b b

b b

X S X

X S X
.                                                 (23)
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Here S defines a particular norm.  In this case we choose a global kinetic-energy norm 

and S is a diagonal matrix. As shown in Bishop and Toth (1999),  b actually was the 

leading eigenvector of ( )1 / 2 1 / 2TT b b- -β D X S X D β where β and D were the eigenvalue 

and eigenvector matrices of ( )Ta aX S X ,  and the corresponding eigenvalue was the 

maximal growth. 

Fig. 6 shows the 24-h maximal growth in the global kinetic-energy norm within 

the ETKF and EnSRF ensemble subspaces. For the ETKF, the maximal growth 

corresponding to the optimal performance in rms analysis error measure ( 4.0=α ) was 

larger than that of the optimal EnSRF (15000 km ~ 25000 km localization scale). While 

the maximal growth for the ETKF with different linear combination coefficients were 

similar, the maximal growth of the EnSRF varied with the localization scale applied.  In 

general, the maximal growth decreased with more severe localization.  

d. Initial-condition balance.

The EnSRF’s slower growth under more severe localization in Fig. 6 may have 

been due to the imbalanced perturbations induced by the covariance localization 

(Mitchell et al. 2002, Lorenc 2003, Houtekamer and Mitchell 2005).  In an operational 

data assimilation system, an explicit or implicit initialization is typically utilized, 

otherwise imbalances between the mass, momentum, and diabatic heating in the analysis 

can produce large-amplitude gravity waves. However, initialization requires extra 

computational cost and also it may degrade the analysis. Hence a data assimilation 

technique that itself can produce balanced initial condition is desirable.
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The mean absolute tendency of surface pressure (Lynch and Huang 1992) is a 

useful diagnostic of the amount of balance/imbalance for an analysis generated by a data 

assimilation scheme.  Surface π is the quantity analogous to the surface pressure in the 

two-layer primitive equation model.  To examine surface π tendencies, we re-ran 

forecasts from the analysis ensembles to 24-h lead, producing output every hour.  We 

then calculated the hourly surface Exner function tendencies.  Fig. 7 shows the mean 

absolute tendency of the hourly surface π averaged over global grids, all ensemble 

members, all times, and the 23 hourly tendency snapshots from the forecast. As expected, 

the EnSRF tendencies were larger than the true tendency, and this discrepancy was 

greater when the localization length scale was shorter. For the hybrid, the initial analyses 

were much more balanced when weighting the unlocalized ETKF covariances than when 

weighting the localized 3DVAR covariances [an operational 3DVAR with a more 

carefully designed background-error covariance model may be more balanced than our 

simplified 3DVAR covariance model implemented here].  The optimal hybrid ( 4.0=α ) 

was more balanced than the EnSRF with optimal localization (15000 - 25000 km). This 

result suggests that relative to the hybrid ETKF-3DVAR, the EnSRF may be more in 

need of an explicit initialization step or to use a time integration scheme with extra 

numerical damping of gravity waves.  

e. Spread-skill relationships.

To measure a spread-skill relationship, we used a method similar to that used in 

Wang and Bishop (2003). We first produced a scatterplot whose ordinate and abscissa are 
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the squared analysis error and the analysis ensemble variance for a particular variable of 

interest, respectively. We collected such points over all grid points and for all time 

samples. We then divided these points into four equally populated bins, arranged in order 

of increasing ensemble variance.  Next, we averaged the squared analysis error and 

analysis ensemble variance for each bin and took its square root. Connecting the points 

then yields a curve describing the relationship between the analysis ensemble spread and 

the rms analysis error. Fig. 8 shows an example of such curves of surface π for the 

hybrid with 40.=α and the EnSRF with localization length scale equal to 15000 km.  

There are two aspects of the curve that we are interested to examine. First, after further 

averaging the values of the four points, we found that both schemes’ ensemble spread 

were approximately equal to their rms analysis error, which means the ensemble spreads 

were reliable overall.  Second, we examined whether spread was an accurate predictor of 

the error for the four individual subsets.  Ideally, such spread-skill curve should follow 

the 45-degree reference line.  Fig. 8 shows the result for the surface π norm.  The 

ensemble spreads of both schemes were sub-optimal; they were negatively biased when 

the analysis error was small and positively biased when the analysis error was large.  

Such biases were due to the deficiencies of the ensembles generated in each system. In 

the perfect model experiment conducted here, it was presumably because of the sampling 

error and the approximations made in estimating the error covariances .  The curves for 

the hybrid and the EnSRF were approximately parallel under the surface π norm (Fig. 

8), kinetic energy norm and 2π∆ norm (not shown). This indicated that the ETKF and the 

EnSRF ensembles had similar skill in estimating the error variance. Results at forecast 

times e.g., 1-day lead time, were qualitatively the same.  Further tests with the 
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normalized error variance and the kurtosis (Goedicke 1953; Wang and Bishop 2003) of 

the errors suggested that the abilities of the two systems to distinguish an estimate with 

large error variance from that with a small error variance were not significantly different.

5. Conclusions and discussions

In this paper, we compared the skill of the hybrid ETKF-3DVAR and the EnSRF 

analysis schemes in an observing-system simulation experiment under perfect- model 

assumptions.  A two-layer primitive equation global model was used.  Each system uses 

50-member ensemble. The EnSRF runs provided a reference for the expected analysis 

accuracy that may be obtained from a state-of-the-art ensemble-based data assimilation 

method.  This assimilation method was costly, however, as it requires parallel 

assimilation for each member and observations are assimilated serially.  In the hybrid 

ETKF-3DVAR scheme, the flow-dependent covariance from the ETKF was incorporated 

in the standard 3DVAR when updating the mean state. According to previous work (e.g., 

Lorenz 2003; Buehner 2005; Barker 1999; Wang et al. 2005), this can be conveniently 

built as incremental changes to the existing operational variational codes.  The ensemble 

perturbations were updated by the computational efficient ETKF scheme.   

Results from this paper demonstrated that the hybrid ETKF-3DVAR achieved a 

large portion (90%) of the EnSRF’s analysis improvement over the 3DVAR. The ability 

of the ETKF ensemble to estimate the error variance is similar to the EnSRF. Further, the 

initial conditions of the ETKF-3DVAR are more balanced than those of the EnSRF. The 

maximal growth in the ETKF ensemble perturbation subspace is larger than that in the 

EnSRF ensemble perturbation space.   
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To apply the hybrid scheme in the current operational variational framework 

where preconditioning with respect to the background term is used, as suggested by 

Lorenc (2003), Buehner (2005), Barker (1999) and Wang et al. (2005), in the cost 

function one can add another background term with the extended control variables 

preconditioned upon the square root of the ensemble covariance. The increment in the 

observation term is then equal to the weighted sum of the 3DVAR standard increment 

and that associated with the extended control variables.  Experiments with the alpha-

extended control variable method (Barker 1999; Dale Barker, personal communication 

2005) suggested that with spectral truncation modest extra cost relative to the standard 

3DVAR were needed. Observation-space preconditioning, such as the Naval Research 

Laboratory Atmospheric Variational Data Assimilation System (NAVDAS; Daley and 

Barker 2001), can also incorporate the ensemble covariance easily by linearly combining 

the ensemble covariance with the standard 3DVAR covariance. 

The idea of the hybrid ETKF-3DVAR may be extended to the 4DVAR 

framework also.  The incorporation of the ensemble covariance may improve its initial 

background-error covariance estimate and thus improve the 4DVAR analysis. In this 

case, the ETKF transformation matrix is calculated with observations distributed in both 

space and time. 

Our conclusions about the performance of the hybrid may well be model- and 

system-dependent.  Our implementation of 3DVAR was approximate. For example, in 

section 3b, covariance localization with scale of 15000km was applied on the limited 

perturbation samples, which may induce imbalance. The operational 3DVAR, however, 

is often well designed to maintain the balance. So it is possible that a more carefully 
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constructed 3DVAR method would perform better, and thus may make the hybrid ETKF-

3DVAR analysis even more competitive with or better than the EnSRF.  Further, this 

initial test excluded the effects of model errors, which contaminate operational data 

assimilations.  The 3DVAR covariance in this case not only stabilizes the analysis cycle 

but also provides a representation of the imperfectly known model error covariance 

(Etherton and Bishop 2004, Houtekamer et al. 2005).  We expect to compare the EnSRF 

and the hybrid in an imperfect-model framework in future experiments.
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Appendix A: Derivation of an improved ETKF formulation under the white noise 

assumption. 

Here, we identify gross bias in the ETKF formulation (7) given in Bishop et al. 

(2001), which occurs when the ensemble size K is significantly less than the rank of the 

true forecast error covariance r . We shall refer to this version of the ETKF as the “old 

ETKF”.  Having identified and explained the bias, we then give the reasoning behind the 

bias ameliorated formulation given by equation (8).  We believe that this formulation is 

superior because (a) 1-D simple model experiments (in the forthcoming paper) show that 

the analysis error variance estimate by formula (8) is closer to an optimal scheme and (b) 

experiments in this paper also showed that formula (8) delivers superior performance to 

(7).

The sample background forecast error covariance of a K-member ensemble in the 

normalized observation space TeH~PH~ is given by

  
( )( )

1
1

−
=

∑
=

K

TK

k

b
k

b
k

Te

'' H~H~

H~PH~
xx

,                                          (A.1)

where H~ is the normalized observation operator, i.e., HRH~ / 21−= , and b
k
'x is the deviation 

of the kth member from the ensemble mean. With the innovation-based inflation factor 

applied (Wang and Bishop 2003), the sample covariance in (A.1) provides a reasonable 

estimate of the total forecast error variance on the entire normalized observation space, 

i.e.,

 ( ) ( ) ( ) ( )Tf
K

j
j

TTe TrTrTrTr H~PH~ΓEEΓH~PH~ ==== ∑
−

=

1

1

γ ,                     (A.2)
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where Tr is the trace; 1 2 1, ,.., ,..,j K − =  e e e eE lists the K-1 orthonormal eigenvectors and 

the diagonal matrix 1 2 1{ , ,.., ,.., }j Kdiag γ γ γ γ −=Γ lists the corresponding non-zero 

eigenvalues of  Te H~PH~ ; Tf H~PH~ is the true forecast error covariance in normalized 

observation space. Note that the dimensions of E , Γ , Te H~PH~ , Tf H~PH~ are ( )1−× Kp , 

( ) ( )11 −×− KK , pp × , and pp × respectively, where p is the number of observations.

However, when K is significantly less than r , the sample covariance will 

generally overestimate the forecast error variance within the vector space spanned by the 

ensemble perturbations. To see this, we consider the special case where the true forecast 

error covariance matrix in normalized observation space Tf H~PH~ has r non-zero 

eigenvalues all of which have the same value λ , i.e.,

TTf IVVH~PH~ λ= , and IVV =T . (A.3)

where V is a rp × matrix and I is the rr × identity matrix. Eq. (A.3) defines what we 

refer to as the white noise assumption. From (A.3), ( ) λrTr Tf =H~PH~ and thus from (A.2)

1

1

K

j
j

rγ λ
−

=

=∑ (A.4) 

Eq. (A.4) shows that the sum of all of the r non-zero eigenvalues of the entire system is 

equal to the sum of the K-1 eigenvalues jγ corresponding to the K-1 orthogonal 

eigenvectors of Te H~PH~ .  Note that, in general, Kr >> .  Note also that the true error 

variance in one of the sample covariance eigenvector directions je is given by 

λ=j
TfT

j ee H~PH~ . (A.5)

Further from (A.4),
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( )
1

1 1

K

j
j K

r r

γ
λ γ

−

= −
= =

∑
(A.6)

where ( )
1

1

1/ 1
K

j
j

Kγ γ
−

=

= −  ∑ gives the mean of the sample covariance eigenvalues.  

Comparison of (A.5) and (A.6) shows that the eigenvalue iγ overestimates the error 

variance in the direction associated with its eigenvector by the factor r/(K-1). 

Noting that the sample analysis error covariance by the old ETKF (Bishop et al. 

2001; Wang and Bishop 2003; Wang et al. 2004) is  

( ) T
i

K

i i

i
i

TTa ee∑
−

=

−

+
=+=

1

1

1

1γ
γEIΓEΓH~SH~ . (A.7)

It is evident from (A.7) that the filtering properties of the ETKF error covariance update 

equation are sensitive to the eigenvalues iγ .  Thus it seems appropriate to replace these 

eigenvalues by a set of eigenvalues that better reflect the error variance within the 

ensemble subspace. In other words, it suggests that we replace (A.7) with  

( ) T
i

K

i i

i
i

TTa aa ee∑
−

=

−

+
=+=

1

1

1

1ργ
ργρρ EIΓΓEH~SH~ . (A.8)

The factor ρ in (A.8) gives the percentage of total variance that projects onto the 

ensemble subspace, i.e.,

( )
( )Tf

TfT

Tr
Tr

H~PH~
EH~PH~E

=ρ . (A.9)

This choice is motivated by the fact that (A.9) gives 

 
r

K 1−
=ρ ,                                                    (A.10)
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which according to the previous discussion is precisely what is required under the white 

noise assumption. Please refer to Appendix B for how to estimate ρ in (A.9) in general.

The factor a in (A.8) is motivated by the following arguments. While 

( ) TEIΓΓE 1−+ρρ would improve the filtering properties for directions that lie within the 

ensemble subspace, it does not improve the filtering properties in directions that lie 

outside the ensemble subspace. We hypothesize that a coefficient a will be required in 

order to ensure relatively unbiased filtering properties in directions that do not lie entirely 

within the ensemble perturbation vector subspace. In other words, we search for an a

such that the expected sample analysis error covariance will give a relatively unbiased 

estimate of the true analysis error covariance, Ta H~PH~ , i.e.,

 T
j

K

j j

j
j

TaTa a ee∑
−

= +
==

1

1 1ργ
ργ

H~SH~H~PH~ ,                                (A.11)

In (A.11) the angle bracket on the far right side of (A.11) represents the average over an 

infinite number of independent calculations of 1( ) Tρ ρ −+E Γ Γ I E obtained from a 

corresponding infinite number of independent K-member ensembles. 

Next we choose a so that it satisfies (A.11) under the white spectrum assumption.  

Under this assumption, the true analysis error covariance is (Wang and Bishop 2003)

 ( ) T
i

r

i
i

TTa vv∑
= +

=+=
1 1

1
λ

λ
λλ IVVH~PH~ .                                   (A.12)

Substituting (A.12) into (A.11), premultiplying by T
iv and postmultiplying by iv one 

obtains
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Note that the term T T
i j j iv e e v represents the square of the projection of the ith true 

eigenvector on the jth sample covariance eigenvector. Under the white noise 

approximation, variations in this term are uncorrelated with variations in jγ and hence 

(A.13) can be rewritten in the form,

1

1
.

1 1

K
j T T

i j j i
j j

a
ργλ

λ ργ

−

=

 
=   + + 

∑ v e e v (A.14)

Also, the direction me is statistically interchangeable with the direction ne under the 

white noise assumption.  Hence T T
i j j iv e e v and 











+1j

j

ργ
ργ

have the same value for all 

j.  Furthermore, note that we could easily augment the 1−K orthonormal basis E using 

Gramm-Schmidt orthogonalization (Golub and Van Loan, 1989) to obtain an expanded r-

dimensional subspace EE that precisely spanned the same space of the true eigenvectors 

V. Hence,

( )
1

1
rTT E E T T T T

i i i j j i i j j i
j

r
=

= = =∑v v v e e v v e e vE E (A.15)

Eq. (A.15) implies that 

1T T
i j j i r

=v e e v (A.16)
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Further under the white noise assumption, we assume that jγ is close to γ . Thus from 

(A.6) and (A.10), λργ ≈j , which leads to 

1 1
j

j

ργλ
λ ργ

 
≈   + + 

(A.17)

Using (A.17) and (A.16) in (A.15) then gives

1
1

ra
K ρ

≈ =
−

. (A.18)

Note from (A.16), ρ=
−

≈
r

K
a

11 is the expected squared projection of a true eigenvector 

onto 1−K ensemble based eigenvectors. It is directly related to the expected angle 

subtended between ensemble eigenvectors and true eigenvectors. Using (A.18) in (A.11) 

suggests that if we define the sample analysis error covariance as
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=+=
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1

1
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j

j

j
j

Ta ee
ργ

γ
ρ EIΓEΓH~SH~ ,                             (A.19)

the expected value of it will provide a less biased estimate of the true analysis error 

covariance Ta H~PH~ than the old ETKF. From (10), the sample analysis error covariance 

in state space that is consistent with (A.19) is 

 ( ) ( ) ( )11 −+= − KTbTba /XCIΓCXS ρ .                                       (A.20)

Thus, the new transformation matrix given by (8) is recovered.

 Appendix B: Estimating the ρ parameter in (A.9)

To estimate the ρ factor in (A.9), we need to estimate the total forecast error 

variance in normalized observation space ( )TfTr H~PH~ and its projection onto the
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ensemble subspace ( )EH~PH~E TfTTr .  The difference between observation and forecast 

vectors, i.e., the innovations, enables both of these tasks. 

First, note that since

 
( ) [ ][ ]
[ ] [ ]bTb

TbbTf TrTr

xyxy

xyxy

H~RH~R

H~RH~RIH~PH~

//

//

−−=

−−=+
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−−

2121

2121

.                       (B.1)

It follows that the approximation

 ( ) [ ] [ ] pTr bTbTf −−−≈ −− xyxy H~RH~RH~PH~ // 2121 , (B.2)

where p is the number of observations, gives an unbiased estimate of the trace of the 

total forecast error variance in normalized observation space. To estimate the accuracy of 

the approximation (B.2), recognize that

 ∑
=

− =−
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i
ii

b

1

21 vxy ηH~R / ,                                                    (B.3)

where iv is the ith eigenvector of  the normalized innovation covariance IH~PH~ +Tf and 

iη is a random variable with mean zero and variance equal to the ith eigenvalue iσ of 

IH~PH~ +Tf .  Eq. (B.3) implies that
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Note that if the eigenspectrum of IH~PH~ +Tf were flat (white) with iσ =constant for all i,

and iη is normally distributed, then the numerator of (B.4) would be a 2χ variable with 

p degrees of freedom (Ross 1998, p267). Hence, in this case, (B.4) tends to unity as p
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tends to infinity. Tables of 2χ statistics can be used to determine the reliability of 

estimates obtained through (B.2).

In typical atmospheric and oceanographic applications, however, little is known 

about the eigenvalue spectrum of the innovation covariance matrix. In such cases, the 

only meaningful test of the accuracy of (B.2) is to check the variance of a sample of 

squared innovations. Since (B.2) is an unbiased estimate, small variance is indicative of 

estimation accuracy. Wang and Bishop’s (2003) experience in using (B.2) to generate an 

inflation factor for an old-ETKF ensemble in a low resolution (T42) global circulation 

model suggests that, for the atmosphere, the innovation associated with the global 

rawinsonde network has enough degrees of freedom to make (B.2) useful. If the 

observational network is sparse, assuming that the distributions from which 

[ ] [ ]bTb xyxy H~RH~R // −− −− 2121 are sampled have a degree of time invariance, then the 

approximation

 ( ) [ ] [ ] pTr bTbTf −−−≈ −− xyxy H~RH~RH~PH~ // 2121 ,                         (B.5)

can be used.  The overbar in (B.5) represents the average of 

[ ] [ ]bTb xyxy H~RH~R // −− −− 2121 computed over a period of time.

Having obtained a plausible estimate of ( )TfTr H~PH~ , one also needs to estimate 

( )EH~PH~E fTTr . Replacing IH~PH~ +Tf by ( )EIH~PH~E +TfT in (B.1), leads to the 

approximation

 ( ) [ ] [ ] ( )12121 −−−−≈ −− KTr bTTbTfT xyxy H~REEH~REH~PH~E // ,                        (B.6)

and the ( )EIH~PH~E +TfT counterpart of (B.4) is 
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where iυ is the ith eigenvalue of  the ( ) ( )11 −×− KK normalized innovation covariance 

( )EIH~PH~E +TfT , iξ is a random variable with mean zero and variance iυ . In (B.7) υ

gives the mean of the eigenvalues. 

From our previous discussion of (B.2) and (B.4), large ensemble sizes K would 

generally be required in order to give (B.6) a high level of accuracy. If only a small 

ensemble is available, similarly to (B.5), the approximation

( ) [ ] [ ] ( )12121 −−−−≈ −− KTr bTTbTfT xyxy H~REEH~REH~PH~E // ,                 (B.8)

can  be used.  Given (B.5) and (B.8), the estimated ρ factor is given by (9). In the 

current experiment, the overbars in (B.5) and (B.8) are the average of the two weeks of 

data previous to the current time. 
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Figure captions

Fig. 1. Illustration of the hybrid ETKF-3DVAR analysis and ensemble generation cycle 

for a hypothetical three-member ensemble. The ensemble mean is updated with the 

background-error covariance estimated by the linear combination of the ETKF ensemble 

covariance and the 3DVAR covariance. The ensemble perturbation is updated by the 

ETKF transformation matrix with innovation based inflation applied.

Fig. 2.  Observation locations on 362 spherical geodesic grids.

Fig. 3 Root-mean square analysis error for kinetic-energy norm, upper-layer thickness 

2π∆ norm, and surface π norm. The black bars are results for the hybrid ETKF-3DVAR 

scheme with different linear combination coefficients α = 0.2, 0.4, 0.6, 0.8, and 1.0. The 

grey bars are results for the EnSRF with different covariance localization scales of 5000  

km, 15000 km, 25000 km, 35000 km, and 45000 km. The white bar is for the 3DVAR.

Fig. 4. A snapshot (at the 100th analysis cycle) of the ensemble mean upper layer wind 
(U , V ) and thickness ( 2π∆ ) increments for single -3 J kg-1 K-1

2π∆ observation 
increment for the ETKF-3DVAR scheme with 40.=α . The black dot is the observation 
location. The contours and color shades are the background ensemble mean and the 
analysis increment at the 100th cycle for (a) upper layer U wind, (b) upper layer V wind, 
and (c) upper layer thickness 2π∆ . The contour intervals for the background mean are 
from –20 1−ms to 45 1−ms by 5 1−ms for (a), from –24 1−ms to 28 1−ms by 4 1−ms for (b) 
and from 75 11 −− KJkg to 450 11 −− KJkg by 25 11 −− KJkg . 

Fig. 5. Same as Fig. 4, except for the EnSRF with localization scale of 25000km.
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Fig. 6. Maximal 24-h perturbation growth in global kinetic-energy norm within the 

ensemble perturbation subspace for the hybrid ETKF-3DVAR (black bars), with different 

linear combination coefficients α = 0.2, 0.4, 0.6, 0.8, and 1.0, and the EnSRF (grey bars) 

with different covariance localization scales (5000km, 15000km, 25000km, 35000km, 

and 45000km).

Fig. 7. Mean absolute surface π tendency (J kg-1 K-1 h -1) averaged globally, over the 

subsequent 23 1-h forecast periods and over all ensemble members. The black bars are 

for the hybrid ETKF-3DVAR with different linear combination coefficients α = 0.2, 0.4, 

0.6, 0.8, and 1.0,  and the grey bars are for the EnSRF with different covariance 

localization scales (5000 km, 15000 km, 25000 km, 35000 km, and 45000 km). The 

white is for the truth.

Fig. 8. The relationship between the surface π analysis spread and rms analysis error for 

the hybrid ETKF-3DVAR (dashed) and the EnSRF (solid). The dotted line is a reference 

line for a perfect ensemble.
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Figure 1. Illustration of the hybrid ETKF-3DVAR analysis and ensemble generation 
cycle for a hypothetical three-member ensemble. The ensemble mean is updated with the 
background-error covariance estimated by the linear combination of the ETKF ensemble 
covariance and the 3DVAR covariance. The ensemble perturbation is updated by the 
ETKF transformation matrix with innovation based inflation applied.
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Fig. 2 Observation locations on 362 spherical geodesic grids.
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Fig. 3: Root-mean square analysis error for kinetic-energy norm, upper-layer thickness 
2π∆ norm, and surface π norm. The black bars are results for the hybrid ETKF-3DVAR 

scheme with different linear combination coefficients α = 0.2, 0.4, 0.6, 0.8, and 1.0. The 
grey bars are results for the EnSRF with different covariance localization scales of 5000  
km, 15000 km, 25000 km, 35000 km, and 45000 km. The white bar is for the 3DVAR.
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Fig. 4: A snapshot (at the 100th analysis cycle) of the ensemble mean upper layer wind 
(U , V ) and thickness ( 2π∆ ) increments for single -3 J kg-1 K-1

2π∆ observation 
increment for the ETKF-3DVAR scheme with 40.=α . The black dot is the observation 
location. The contours and color shades are the background ensemble mean and the 
analysis increment at the 100th cycle for (a) upper layer U wind, (b) upper layer V wind, 
and (c) upper layer thickness 2π∆ . The contour intervals for the background mean are 
from –20 1−ms to 45 1−ms by 5 1−ms for (a), from –24 1−ms to 28 1−ms by 4 1−ms for (b) 
and from 75 11 −− KJkg to 450 11 −− KJkg by 25 11 −− KJkg . 
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Fig. 5: Same as Fig. 4, except for the EnSRF with localization scale of 25000 km.
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Fig. 6: Maximal 24-h perturbation growth in global kinetic-energy norm within the 
ensemble perturbation subspace for the hybrid ETKF-3DVAR (black bars), with different 
linear combination coefficients α = 0.2, 0.4, 0.6, 0.8, and 1.0, and the EnSRF (grey bars) 
with different covariance localization scales (5000km, 15000km, 25000km, 35000km, 
and 45000km). 
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Fig. 7: Mean absolute surface π tendency (J kg-1 K-1 h -1) averaged globally, over the 
subsequent 23 1-h forecast periods and over all ensemble members. The black bars are 
for the hybrid ETKF-3DVAR with different linear combination coefficients α = 0.2, 0.4, 
0.6, 0.8, and 1.0,  and the grey bars are for the EnSRF with different covariance 
localization scales (5000 km, 15000 km, 25000 km, 35000 km, and 45000 km). The 
white is for the truth.
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Fig. 8: The relationship between the surface π analysis spread and rms analysis error for 
the hybrid ETKF-3DVAR (dashed) and the EnSRF (solid). The dotted line is a reference 
line for a perfect ensemble.


